PA10VSC

PA10V(S)

31

PA10V(S)	0	28	DR	/	31	R	-	Р	S	С	62	N00
Pump model	Operating mode	Size	Control mode		Series	Direction of rotation		Sealing ma- terial	Shaft end	Mounting flange	Working port	Through drive

* Model Description

Axial piston unit
Model variable pump, swash plate design
Rated pressure 280bar
Peak pressure 350bar

Type of operation

Pump, open circuits	0
---------------------	---

Size

Displacement (ml/r)	18	28	45	71	100	140	
---------------------	----	----	----	----	-----	-----	--

Mode of operation

Two point, direct control	\checkmark	\checkmark	\sim	\sim	\checkmark	\checkmark	DG
Pressure control	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\sim	DR
Remote Pressure control	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	DRG
Pressure and flow control	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	DFR
Pressure and flow control Orifice in X-channel closed	\checkmark	\checkmark			\checkmark	\checkmark	DFR1
Pressure, flow, torque control							DFLR

Series

Products series

PA10VSO Series 31

Axial piston variable pump

Used for hydraulic drives in open loop circuits

Features:

- Swashplate axial piston pump.
- Adjust the angle of swashplate to realize the stepless variable. .
- Good suction characteristic.
- Have the structural design of compact, light weight, low noise ٠ characteristics.
- The sensitivity of control system. .
- Flow is proportional to the drivek speed and to the displacement. .
- Nominal pressure reach to 28 Mpa. .
- Long service life, high-precision bearings. ٠
- Hydrostatic balance slipper, improve the life of pump. .
- Axial and radial loading of drive shaft possible

Direction of rotation

With view on shaft end	Clockwise	R
With view on shart end	Counterclockwise	L

Seals

NBR Nitrile rubber	Р
FKM Fluoro-rubber	V

Shaft end	18	28	45	71	100	140	
Metric parallel with key	\sim	\checkmark	\checkmark	\checkmark		\checkmark	Р
SAE splined	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	S
SAE splined (higher through drive torque)	\checkmark	\checkmark	\checkmark	\checkmark	_	_	R
SAE parallel with key	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	К
SAE splined reduced dia, Not for through drive	\checkmark	_	\checkmark	_	\checkmark	_	U
Similar to shaft "U", higher input torque, not for through drive	_	_		_	\checkmark	_	w

Mounting flange	18	28	45	71	100	140	
ISO 2-hole		\checkmark	\sim			_	А
SAE 2-hole	\checkmark		\checkmark		\checkmark	-	С
ISO 4-hole	_	_	_	_	_	\sim	В
SAE 4-hole	_	_	_	_	_	\checkmark	D

Service ports

SAE flange rear, fixing thread metric	—	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	11
SAE flange rear, fixing thread NUC	_			\checkmark	\checkmark	\checkmark	61
SAE flange on opposite side, fixing thread metric	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	12
SAE flange on opposite NUC	\checkmark			\checkmark	\checkmark	\checkmark	62
SAE flange rear, fixing thread metric (NUC)	_	_	_	\checkmark	_	_	41(91)
SAE flange on opposite side, fixing thread metric (NUC)	_	_	_	\checkmark	_	_	42(92)

Through drive	
---------------	--

With through drive to accept an axial

piston pump or gear pump	18	28	45	71	100	140	
Without through drive	\sim	\checkmark	\checkmark	\checkmark		\sim	N00

* Technical Data

Operating p	ressure range-inlet						
Absolute pressure at port S							
Pabs min	0.8 bar						
Pabs max 30 bar							

Operating pressure range-inlet Pressure at port B Norminal pressure PN 280 bar Peak pressure Pmax 350 bar Applications sith intermittent operating pressures up to 315 bar at 10% duty are permissible.

Case drain pressure

Maximum permissible pressure of leakage fluid (at port L, L1); Maximum 0.5bar higher than the inlet pressure at port S, but no higher than 2bar absolute.

Size			18	28	45	71	100	140
Displacemen	nt (V _{gmax})	cm³/r	18	28	45	71	100	140
Max.speed (r	n _{max})	rpm	3300	3000	2600	2200	2000	1800
Max.Output	in n _{max} q _v	L/min	59.4	84	117	156	200	252
flow	in 1500r/min q _v	L/min	27	42	68	107	150	210
Max power	in n _{max} P _{max}	KW	27.7	39	55	73	93	118
Max.power	in 1500r/min P _{max}	KW	12.6	20	32	50	70	98
Max.torque (N.m	$\Delta P=280 \text{ bar}$) in V_{gm}	ax T _{max}	80.1	125	200	316	445	623
Weight(appr	oximately)	m kg	12	15	21	33	45	60

Parameter calculation

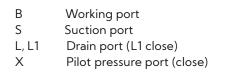
Flow
$$q_v = \frac{V_g \cdot n \cdot \eta_v}{1000}$$
 [L/min]Drive torque $T = \frac{1,59 \cdot V \cdot \lambda}{100 \cdot \eta_{mh}}$ Drive power $p = \frac{T \cdot n}{9549} = \frac{2\pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p}{600 \cdot \eta_t}$ [kW] V_g = Geometry displacement each rotate [cm³] v_g = Geometry displacement each rotate [cm³] η_v = Cubage's efficient η_{mh} = Mehanical hydrogenet $\eta_v = r_v \cdot \eta_v \cdot \eta_{mh}$ v_g = Rotary speed [rpm] $\eta_v = (\eta_v - \eta_v \cdot \eta_{mh}) Over the torque T = \frac{1,59 \cdot V \cdot \lambda}{100 \cdot \eta_{mh}}$

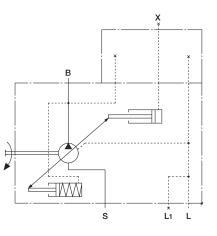
Drive torque T =
$$\frac{1,59 \cdot V \cdot \triangle P}{100 \cdot \eta_{mb}} = \frac{V_g \cdot \triangle P}{20\pi \cdot \eta_{mb}}$$

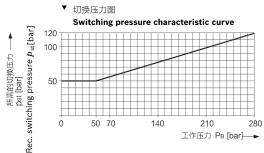
ency raulic efficiency $\eta_{t} = (\eta_{t} = \eta_{v} \cdot \eta_{mh})$ Overall efficiency

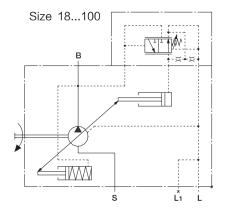
In the control range of the pump, the pressure in the hydraulic system is kept constant. Therefore, the pump only provides the hydraulic oirequired for the actuator. Pressure can

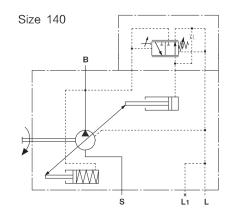
be set in the control valve.

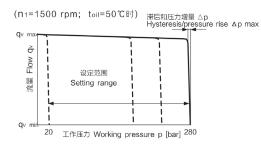


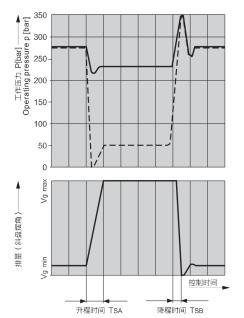

DG - Two-point control, direct operated


The variable pump can be set to a minimum swivel angle by connecting an external switching pressure to port X.


This will supply control fluid directly to the stroking piston; a minimum control pressure of $p_{t} \ge 50$ bar is required. The variable pump can only be switched between $V_{a max}$ or $V_{a max}$. Please note that the required control pressure at port X is directly dependent on the actual working pressure p_{B} in port B. (See control pressure characteristic curve). Control pressure P_{st} at X=0 bar = V_{gmax} Control pressure P_{st} at X≥50 bar = V_{gmin} The maximum permissible switching pressure is 280 bar.


Oil port





PA10VSO

Characteristic curve

Left curve shows the average value of the test cond itions. Condition: n=I500rpm; toil=50 $^{\circ}$ C. The main overflow value is located in 350bar. Using the distance pump pressure from the oil port downstream 1m of the overflow valve, quickly open or close the pressure line, can achieve the classification load

DR – Pressure control

Drain port (L1 close)

Pilot pressure port

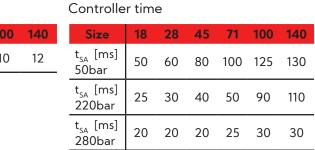
Working port

Suction port

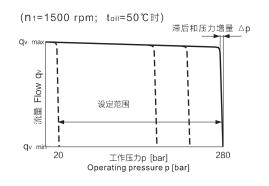
Hysteresis Δp____maxmum

Oil port

Control data


- B Working port S Suction port
- L, L1 Drain port (L1 close)
- X Pilot pressure port (close)

Pressure increase


Size	18	28	45	71	100	140	Size
ΔP bar	4	4	6	8	10	12	t _{sa} [ms 50bar

Pilot fluid consumption [l/min] maximum approx. 3L/min

Hysteresis and repeatability $\Delta p \ [bar]$ maximum 3

Characteristic curve

Pressure increase

Size	18	28	45	71	100	140
ΔP bar	4	4	6	8	10	12

Pilot fluid consumption approx. 3L/min

Oil port

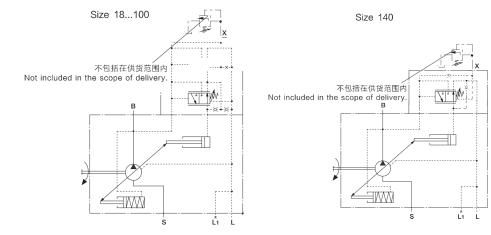
В

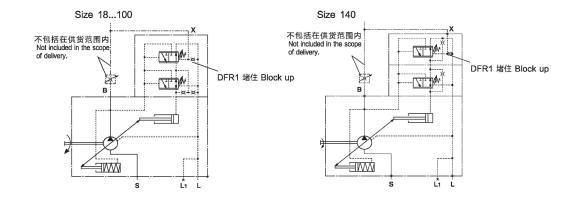
S

Х

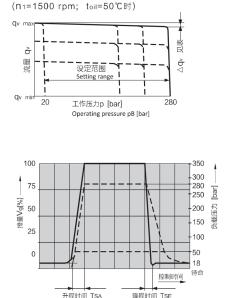
L, L1

3 bar

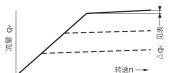

Controller data


DRG - Remote pressure control

The cemote cootml cao be relized by connecting an overflow valve with the oil port X. However, the overiow valve is not included in the DRG control of the supply range. DRG control valve core standard pressure is located in 20bar, the pressure difference generated 1.5L/min control flow.For other settings, please use the text description,oo. We recommend using the following one as a separate relief valve: according to the RC25402 of DBD6 (hy-draulic), or by RC29166 DBETR-S0381,P with throttle hole whose dlamet- is o0.8(control). The maximum length of the pipe shall not exceed 2m


DFR/DFR1 - Pressure / flow control

In addition to the pressure control function, but also through the differential pressure (such as the throttle valve or vave on the pressure difference) to regulate the flow of the pump flow. Pump to provide the oil needed for the actuator. In the DFR1 type, the throttle hole between the fuel tank is blocked.



静态特性曲线 Characteristic curve

Controller time

Size	18	28	45	71	100	140
t _{sa} [ms] 50bar	50	60	80	100	125	130
t _{sa} [ms] 220bar	25	30	40	50	90	110
t _{sa} [ms] 280bar	20	20	20	25	30	30

变转速情况下的静态特性曲线 Characteristic curve at variable rotational speed

流量控制的动态特性曲线所示曲线是在测试条件下测量的平均值。 Characteristic curve valid at n1 = 1500 rpm and θ fluid = 50 °C.

Oil port

В

S

- Working port
- Suction port

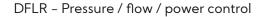
Differential pressure Δp :

1. Standard setting: 14bar

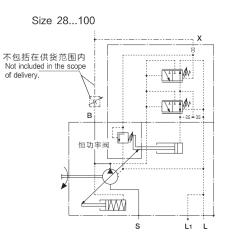
not taken into account.

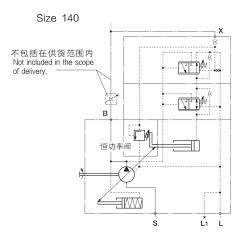
state in plain text.

If another setting is requried, please

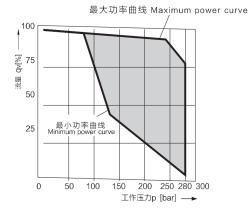

2. Setting range: 14bar to 22bar

Relieving the load on port X to the


reservoir results in a zero stroke ("stan


dby") pressure which lies about 1 to 2bar higher than the defined differential pressure Δp , however, system influences are

- L, L1 Drain port (L1 close)
- X Pilot pressure port



In order to obtain a constant driving torque in the case of working pressure change, by changing the angle of the axial piston element, thus changing the output flow, so that the product of flow and pressure remain constant. Flow control can only be in the constant power control curve.

静态特性曲线 Characteristic curve

Oil port

В

S

Х

- Working port
- Suction port
- L, L1 Drain port (L1 close)
 - Pilot pressure port

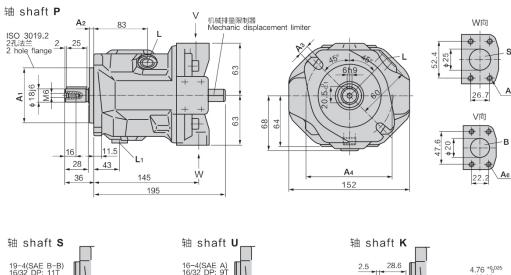
Controller data

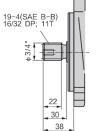
DR pressure controller data see page 39. Maximum flow deviation measured at drive speed n = 1500 rpm.

Size	18	28	45	71	100	140
∆q _{vmax} L/min	0.9	1.0	1.8	2.8	4.0	6.0

When ordering please state the power characteristics to be set at the factory in plain text, e.g. 20 kW at 1500 rpm.

For technical data of pressure controller DR see page 4 right. For technical data of flow controller FR see page 6 left. Beginning of control at < 80bar Control fluid consumption approx. 5.5 l/min max.

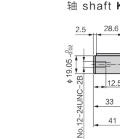

* Dimentions & Size


Dimensions, Size PA10VSO-18 Installation and connection size 18, N00 without valve

* Dimentions & Size

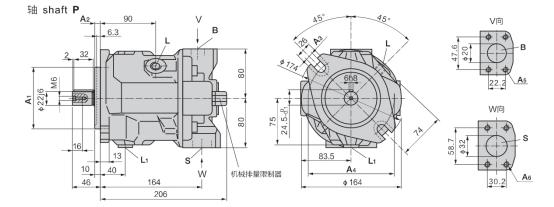
Dimensions, Size PA10VSO-28

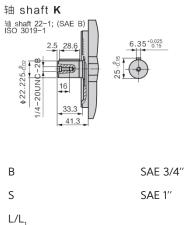
Installation and connection size 28, N00 without valve

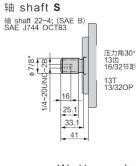


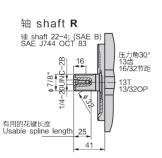
В

S


L/L







Size	A ₁ A ₂ A ₃		A ₄	A ₅	A ₆	Port L/L1	
18 ISO	ø80h8	7	11	ø109	4-M10	4-M10	M16 x 1.5
10150	000110	,		0107	deep 17	deep 17	10110 X 1.5
18 SAE	ø82.55h8	6.3	11	ø106.4	4-3/8-16UNC- 2B	4-3/8-16UNC- 2B	9/16-18UNF-
					deep 20	deep 20	2B

Working port(standard pressure series)
Suction port(standard pressure series)
Drain port(L, as been blocked in the factory)

Size	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	Port L/L1
28 ISO	ø100h8	9	14	ø140	4-M10 deep 17	4-M10 deep 17	M18 x 1.5
28 SAE	ø101.6h8	9.5	ø14	ø146	4-3/8-16UNC- 2B deep 18	4-7/16-14UNC- 2B deep 24	3/4-16UNF- 2B

PA10VSO

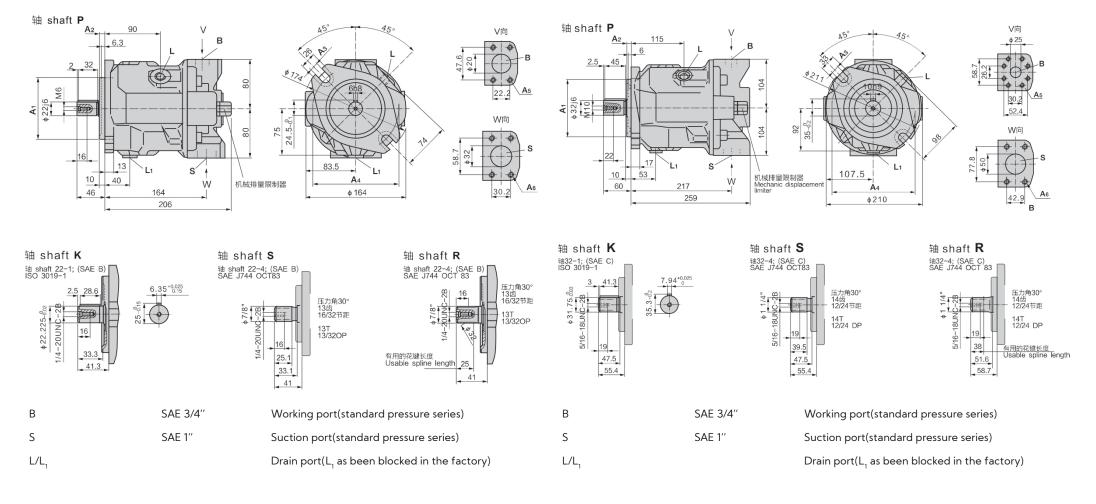
Dimentions & Size *

Dimensions, Size PA10VSO-45 Installation and connection size 45, N00 without valve

* Dimentions & Size

PA10VSO

Port L/L1


M22 x 1.5

7/8-14UNF-

2B

Dimensions, Size PA10VSO-71

Installation and connection size 71, N00 without valve

Size	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	Port L/L1	Size	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆
45 ISO	ø100h8	9	14	ø140	4-M10 deep 17	4-M10 deep 20	M22 x 1.5	71 ISO	ø125h8	9	18	ø180	8-M10 deep 17	4-M12 deep 20
45 SAE	ø101.6h8	9.5	ø14	ø146	4-3/8-16UNC- 2B deep 18	4-1/2-13UNC- 2B deep 22	7/8-14UNF- 2B	71 SAE	ø127h8	12.7	ø18	ø181	8-3/8-16UNC- 2B deep 18	4-1/2-12UNC- 2B deep 22

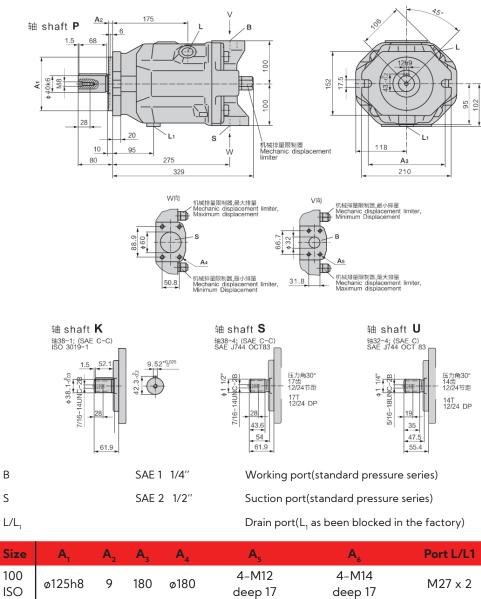
Dimentions & Size *

В

S

100

SAE


12.7

ø127h8

181

ø181

Dimensions, Size PA10VSO-100 Installation and connection size 100, N00 without valve

4-1/2-13UNC-

2B

deep 27

4-1/2-13UNC-

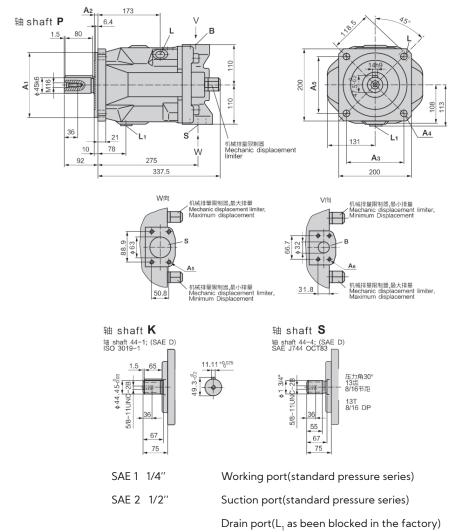
28-2B

deep 18

11/16-12UNF-

2B

Dimentions & Size *


Dimensions, Size PA10VSO-140

В

S

L/L,

Installation and connection size 140, N00 without valve

Size	A ₁	A ₂	A ₃	A ₄	A ₅ A ₆		Port L/L1
140 ISO	ø180h8	9	158.4	4-ø18	4-M12 deep 17	4-M14 deep 19	M27 x 1.5
140 SAE	ø152.4h8	12.7	161.6	4-ø20	4-1/2-13UNC- 2B deep 27	4-1/2-13UNC- 2B deep 19	11/16-12UNF- 2B

